Cytotoxicity, cytocompatibility, cell-labeling efficiency, and in vitro cellular magnetic resonance imaging of gadolinium-catalyzed single-walled carbon nanotubes.
نویسندگان
چکیده
Cell tracking by magnetic resonance imaging (MRI) is an emerging technique that typically requires the use of MRI contrast agents (CAs). A MRI CA for cellular imaging should label cells efficiently at potentially safe concentrations, have high relaxivity, and not affect the cellular machinery. In this article, we report the cytotoxicity, cytocompatibility, and cell labeling efficiency in NIH/3T3 fibroblasts of novel, single-walled carbon nanotubes synthesized using gadolinium nanoparticles as catalysts (Gd-SWCNTs). Cells incubated with the Gd-SWCNT showed a dose- (50-100 µg/mL nanotube concentration) and time- (12-48 h) dependent decrease in viability. 30% cell death was observed for cells incubated with Gd-SWCNTs at the maximum dose of 100 µg/mL for 48 h. Cells incubated with the Gd-SWCNTs at concentrations between 1-10 μg/mL for 48 h showed no change in viability or proliferation compared to untreated controls. Additionally, at these potentially safe concentrations, up to 48 h, the cells showed no phosphatidyl serine externalization (pre-apoptotic condition), caspase-3 activity (point of no return for apoptosis), genetic damage, or changes in their division cycle. Localization of Gd-SWCNTs within the cells was confirmed by transmission electron microscopy (TEM) and Raman microscopy, and these results show 100% cell labeling efficiency. Elemental analysis also indicates significant uptake of Gd-SWCNTs by the cells (10(8) -10(9) Gd(3+) ions per cell). Finally, T1 -weighted MRI at 3 T of Gd-SWCNT-labelled cells show up to a four-fold increase in MR signal intensities as compared to untreated cells. These results indicate that Gd-SWCNTs label cells efficiently at potentially safe concentrations, and enhance MRI contrast without any structural damage to the cells.
منابع مشابه
The Assessment of Toxicity Characteristics of Cellular Uptake of Paramagnetic Nanoparticles as a New Magnetic Resonance Imaging Contrast Agent
Nanoparticles are unique that enable many promising medical and technological applications intheir physical, and chemical properties. It is widely accepted that nanoparticles should bethoroughly tested for health nanotoxicity, but a moderate risk analysis is currently prevented by arevealing absence of mechanistic knowledge of nanoparticle toxicity. The purpose of this study<b...
متن کاملThe Assessment of Toxicity Characteristics of Cellular Uptake of Paramagnetic Nanoparticles as a New Magnetic Resonance Imaging Contrast Agent
Nanoparticles are unique that enable many promising medical and technological applications intheir physical, and chemical properties. It is widely accepted that nanoparticles should bethoroughly tested for health nanotoxicity, but a moderate risk analysis is currently prevented by arevealing absence of mechanistic knowledge of nanoparticle toxicity. The purpose of this study<b...
متن کاملHyaluronic acid-functionalized single-walled carbon nanotubes as tumor-targeting MRI contrast agent
A tumor-targeting carrier, hyaluronic acid (HA)-functionalized single-walled carbon nanotubes (SWCNTs), was explored to deliver magnetic resonance imaging (MRI) contrast agents (CAs) targeting to the tumor cells specifically. In this system, HA surface modification for SWCNTs was simply accomplished by amidation process and could make this nanomaterial highly hydrophilic. Cellular uptake was pe...
متن کاملCellular uptake and imaging studies of gadolinium-loaded single-walled carbon nanotubes as MRI contrast agents.
We quantify here, for the first time, the intracellular uptake (J774A.1 murine macrophage cells) of gadolinium-loaded ultra-short single-walled carbon nanotubes (gadonanotubes or GNTs) in a 3 T MRI scanner using R(2) and R(2)* mapping in vitro. GNT-labeled cells exhibited high and linear changes in net transverse relaxations (ΔR(2) and ΔR 2*) with increasing cell concentration. The measured ΔR(...
متن کاملEvaluation of the Effect of PEGylated Single-Walled Carbon Nanotubes on Viability and Proliferation of Jurkat Cells
Among the numerous nanosized drug delivery systems currently under investigation, carbon nanotubes (CNTs), regardless of being single or multiple-walled, offer several advantages and are considered as promising candidates for drug targeting. Despite the valuable potentials of CNTs in drug delivery, their toxicity still remains an important issue. After the PEGylation of single-walled CNTs ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomedical materials research. Part A
دوره 101 12 شماره
صفحات -
تاریخ انتشار 2013